Neural Network Controller for Minimizing Hub Shear Forces in Helicopter - Intelligent Control (ISIC), 1998. Held jointly with IEEE International Symposium on Computational
نویسندگان
چکیده
This paper discusses the application of recurrent neural networks for identification and control of helicopter vibrations. A class of recurrent networks called Memory Neuron Networks are used for plant identification and control. These networks are obtained by adding trainable temporal elements to feed-forward networks. This makes the network output history sensitive and gives them the capability to identify and control systems whose order is unknown or systems with unknown delay. A representative analytical model with higher harmonic pitch angles for minimizing hub shear forces is used for simulation. The effectiveness of the controller in minimizing the force level at varying and constant forward speed are studied. The ability of the controller to cope with changes in system and environment parameters is also considered.
منابع مشابه
A Constrained Simultaneous Perturbation Stochastic Approximation Algorithm Based on Penalty Function - Intelligent Control (ISIC), 1998. Held jointly with IEEE International Symposium on Computational
1.1. Available Techniques In this paper, we present a stochastic approximation algorithm based on penalty function method and a simultaneous perturbation gradient estimate for solving stochastic optimization problems with general inequality constraints. We also presents a very general convergence result for the proposed algorithm.
متن کاملDesign of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks
During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...
متن کاملIntelligent Auto pilot Design for a Nonlinear Model of an Autonomous Helicopter by Adaptive Emotional Approach
There is a growing interest in the modeling and control of model helicopters using nonlinear dynamic models and nonlinear control. Application of a new intelligent control approach called Brain Emotional Learning Based Intelligent Controller (BELBIC) to design autopilot for an autonomous helicopter is addressed in this paper. This controller is applied to a nonlinear model of a helicopter. This...
متن کاملNeural networks for modelling and control of a non-linear dynamic system - Intelligent Control, 1992., Proceedings of the 1992 IEEE International Symposium on
متن کامل
Hybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term
This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004